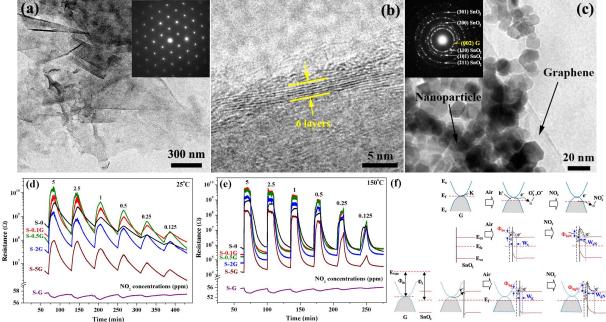
Highly Sensitive and Selective Room Temperature NO₂ Sensor Based on Ohmic Metal–Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Made SnO₂ Composite Films

Chaikarn Liewhiran¹, Nantikan Tammanoon¹, Anurat Wisitsoraat², Chakrit Sriprachuabwong², Ditsayut Phokharatkul², Adisorn Tuantranont², Sukon Phanichphant³

¹ Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50202, Thailand

² Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Klong Luang, Pathumthani 12120, Thailand
³ Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50202, Thailand

Corresponding author: chaikarn l@yahoo.com


Abstract: In this work, flame-made undoped SnO₂ nanoparticles were loaded with 0.1-5 wt% electrolytically exfoliated graphene and systematically studied for NO2 sensing at low working temperatures. Characterizations by X-ray diffraction, transmission/scanning electron microscopy, Raman and X-ray photoelectron spectroscopy indicated that high-quality multilayer graphene sheets with low oxygen content were widely distributed within spheriodal nanoparticles having polycrystalline tetragonal SnO₂ phase. The 10-20 µm-thick sensing films fabricated by spin coating on Au/Al₂O₃ substrates were tested towards NO₂ at operating temperatures ranging from room temperature of 25°C to 350°C in dry air. Gas-sensing results showed that the optimal graphene loading level of 0.5 wt% provided an ultra-high response of 26,342 towards 5 ppm NO₂ with a short response time of 13 s and good recovery stabilization at a low optimal operating temperature of 150°C. In addition, the optimal sensor also displayed high sensor response of 171 towards 5 ppm NO₂ at room temperature (25°C). Furthermore, the sensors displayed very high NO₂ selectivity against H₂S, NH₃, C₂H₅OH, H₂ and H₂O. Detailed mechanisms for the drastic NO₂ response enhancement by graphene were proposed based on the formation of graphene-undoped SnO₂ ohmic metal-semiconductor junctions and accessible interfaces of graphene-SnO₂ nanoparticles [1,2]. Therefore, the electrolytically exfoliated grapheneloaded FSP-made SnO₂ sensor is a highly promising candidate for fast, sensitive and selective detection of NO₂ at low working temperatures.

References

[1] T. Sahm, A. Gurlo, N. Barsan, U. Weimar, Sens. Actuators, B **118** (2006) 78–83.

[2] L. Yu, L. Zhang, H. Song, X. Jiang, Y. Lv, Cryst. Eng. Comm. 16 (2014) 3331–3340.

Figures

RESULTS: (a, b) HR-TEM images of graphene (G), (c) BF-TEM images of 0.5 wt%G/SnO₂, change in resistance under exposure to NO₂ (0.125 to 5 ppm) of G, SnO₂, 0.1-5 wt%G/SnO₂ sensors at (d) room temperature (25°C) and (e) the optimal working temperature (150°C), and (f) the energy band models for NO₂ sensing mechanisms of multilayer G, SnO₂ surface, G-SnO₂ interface.